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We present a gauge-invariant discretization scheme for the multiband envelope function approximation
including strain as well as relativistic effects. Our procedure is based on Wilson’s formulation of gauge
theories. The magnetic field couples to the envelope functions via phase factors that result from spatial
discretization of the gauge covariant derivative. These phase factors contain a discretized curve integral over
the vector potential. In addition, the carrier’s spin couples to the magnetic field via a Zeeman term. In the case
of infinitesimal grid spacings, our method becomes equivalent to the minimal substitution method. Applying
our procedure, we calculate the effective electron and hole g tensor of InAs/InP nanowire dots and obtain
excellent agreement with experimental data. We show that the correct momentum operator ordering in the
Hamiltonian grossly affects the hole g factors. Furthermore, we investigate the influence of strain on g factors

and nonlinear Zeeman splittings in high magnetic fields.
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I. INTRODUCTION

Solving the Schrédinger equation in a constant magnetic
field within the standard minimal-coupling scheme is surpris-
ingly problematic for a confined electronic system. Since the
vector potential increases linearly with dimension, it is larg-
est at the boundaries where the wave function is usually as-
sumed to vanish and supposed to be no longer physically
relevant. This leads to a pronounced gauge dependence of
the eigenfunctions and eigenvalues that is often missed or
ignored. On the other hand, magnetic-field related properties
such as gyromagnetic factors are essential for controlling the
spin degree of freedom of confined carriers in the area of
spintronics or quantum computation.! Effective g factors
have been investigated in quantum wells,>® quantum wires,’
and quantum dots3~!3 and show a strong dependence on the
spatial extension, strain, and material composition of the sys-
tem. It is obviously crucial to develop methods that guaran-
tee manifestly gauge-invariant magnetic-field related solu-
tions of the Schrodinger equation.

Surprisingly few theoretical nonperturbative approaches
have been developed so far that focus on mesoscopic semi-
conductor nanostructures in magnetic fields.'*>® There are
atomistic approaches such as the empirical tight-binding
method, where electromagnetic fields can be taken into ac-
count via a Peierls-type phase factor? in the transfer-matrix
elements'*2? and pseudopotential methods, where magnetic
fields can be incorporated via a  magnetic
pseudopotential.>>>> Recently, an ab initio method*® has
been developed to incorporate magnetic fields rigorously.
Unfortunately, the latter approaches are practicable only for
few-atom systems or crystalline systems with a few dozen
atoms per unit-cell due to the numerical effort involved.

The envelope function approximation (EFA) (Refs.
30-41) is the method of choice for handling strained semi-
conductor structures, including relativistic effects, which
extend over hundreds of nanometers. However, most ap-
proaches that incorporate magnetic fields within the frame-
work of the EFA treat magnetic fields perturbatively.*>~#
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These approaches typically hold only for subtesla magnetic
fields in nanostructures; for a quantum dot of 50 nm diam-
eter, for example, the magnetic length becomes comparable
to its size already at 0.3 T. Commonly, the envelope function
equation is spatially discretized for the calculation of realis-
tic semiconductor devices. Unfortunately, applying discreti-
zation schemes to the minimal-coupling Hamiltonian breaks
the gauge invariance of the discretized equations,”’ and the
spectrum depends on the particular gauge choice of the vec-
tor potential. Recently, a nonperturbative eight-band EFA
method has been developed that is similar to the one pre-
sented here.” It is also based on the gauge-invariant Wilson
loop method.*> While the details of the method are not speci-
fied in the paper, we have been able to reproduce the results
in Fig. 2 of Ref. 28 by using an arithmetically averaged
symmetrized operator ordering rather than the correct order-
ing of differential operators that has been established in Refs.
37-41. The very purpose of the present paper is to provide a
general, consistent, and rigorous derivation of the method for
arbitrary EFA models.

In this paper, we develop a manifestly gauge-invariant
nonperturbative discretization scheme for the multiband EFA
in arbitrary magnetic fields that includes relativistic effects
and strain and does not contain any field-dependent fitting
parameters. It is based on the concept of gauge covariant
derivatives that have been developed in the context of lattice
gauge theories originally.*#® We present a complete and
concise derivation for the general multiband EFA that in-
cludes all derivatives up to second order and thoroughly ac-
counts for their correct placement. For the case of a single
band without spin-orbit interaction, the results of the present
method are identical to those of the scheme developed in
Ref. 27. For the general multiband case, however, a proper
generalization has not been developed so far. To illustrate the
method, we predict the effective g tensor for electrons and
holes in InP/InAs nanowire-based quantum dots.

While the present method yields phase factors that multi-
ply the zero-field Hamiltonian matrix elements similar to the
Peierls phase factors for the hopping matrix elements in
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tight-binding theory, there are important differences. First,
our method assures that the Schrodinger equation reduces to
the correct continuum minimal-coupling Hamiltonian in the
limit of infinitesimal grid spacing. Second, the integration
path consists of unambiguous straight-line segments. In tight
binding, on the other hand, the integration paths directly con-
nect two atomic sites'32% of fixed distance.

The paper is organized as follows. We apply Wilson’s
formulation of gauge theories**° to continuous multiband
Schrodinger equations in Sec. II. In Sec. III, we develop the
gauge-invariant discretization of the multiband EFA and take
into account relativistic effects and strain. In Sec. IV, we
investigate the effective electron and hole g tensor of InP/
InAs nanowire-based quantum dots and compare the results
with experimental data.'” Additionally, we discuss the influ-
ence of strain and high magnetic fields on g factors.

IL. GAUGE INVARIANCE IN MULTIBAND SCHRODINGER
EQUATIONS

We start our discussion with the real-space multiband en-
velope function Schrodinger equation in a magnetic
field 31-34

H(x)F(x) = EF(x), (1)

where F is a column vector containing the n components of
the (spin-dependent) envelope wave function and

Hx) = 2 KHIGK; + 2 [H 0K+ KHT(0]+ HOx)

| )

is the n X n matrix of the Hamiltonian operator in the EFA.
Typically, the number of included bands n for semiconductor
nanostructures is eight or larger. We assume a d-dimensional
structure (d=2); the indices i,j=1,...,d denote the Carte-
sian components. The momentum operators,

Kl-=—l.D,'=—l.|:(?i+i%Ai(X):|’ (3)

can be expressed in terms of the gauge covariant derivatives
D;, and A; are the Cartesian components of the vector poten-

tial. The Hamiltonian matrix 7:((x) has been decomposed into

nX n matrices H" that contain material-dependent k-p pa-
rameters and are second order in the operators K;, whereas

F and H° results from the first and zeroth order terms, re-
spectively. We will refer to these matrices by H?, where the
index ye{0,i,ij}. The coupling of the carrier’s spin to the
magnetic field is included via a Zeeman term that contributes
to H°. A concrete implementation of H(x) is given in Ap-
pendix A. The matrix H° is Hermitian by itself, whereas the
individual second-order matrices " only obey the relation

Hi =(7Ai"‘i);r which suffices to guarantee H to be Hermitian.
We have used the ordering of the differential operators with
respect to the material matrices proposed in Refs. 37—41 that
avoid unphysical and spurious solutions of the EFA in het-
erostructures.
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It can easily be shown that Eq. (1) is invariant under the
gauge transformation,

F(x) — F'(x) = ¢ @MANR(x), (4)

Ai(x) = Al(x) = A(x) + GA(x), &)

since M contains only the covariant derivatives D; and the
magnetic-field components B;. Importantly, it is possible to
rewrite the derivatives D; from Eq. (3) into a particular form
where the vector potential only enters via a phase factor. To
this end, we form the limit*>:46

DF(x) = liml[U(x +&,x)F(x + g) - UXx,x)F(x)], (6)
e—08&

with €,=¢é€; and €; denoting the unit vector pointing along
the i direction. We define the so-called connection U,

U(x+s[,x)=expli%fx+giA(x')dx’], (7)

with the integration path being a straight line from x to x
+¢;. Indeed, by inserting Eq. (7) into Eq. (6), we immedi-
ately regain Eq. (3). Note that U(x,x)=1. We would like to
point out that an illustrative discussion of this continuum
limit from a tight-binding perspective has been given in Ref.
19.

III. GAUGE-INVARIANT DISCRETIZATION
A. Prerequisites

Next, we will develop a gauge-invariant spatial discreti-
zation for the multiband Schroédinger equation [Eq. (1)]. We
assume, without loss of generality, the spatial grid to be
uniform,*” to be rectangular, and to be oriented parallel to the
Cartesian axes. In addition, we assume the space to be d
dimensional generally and enumerate every grid point by a
d-dimensional tuple m of integers.

First, we discretize Eq. (1) for the unproblematic case of a
vanishing vector potential A=0 using a finite difference or
box discretization scheme. For example, we may approxi-
mate the derivatives ¢; in Eq. (2) by forward finite differ-
ences,

9F(x) — S5F(m), (8)

SF(m) = ~[F(m + &) ~ F(m)], 9)

where the vector g;= g€, points to the nearest neighbor in the
positive Cartesian i direction and &€ > 0. Thus, the discretiza-
tion of Eq. (1) will result in the eigenvalue problem,

> Ho(m,n)F(n) = EF(m), (10)

where the sum over n runs over all grid points. Here,
Ho(m,n) are the components of the discretized zero-field
Hamiltonian operator and F(n) denotes the discretized enve-
lope function. The dimension of the Hamiltonian matrix is
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the product of the total number of grid points times the num-
ber of included bands n. For simplicity, we only take into
account nearest-neighbor interactions. Since the Hamiltonian
includes first and second derivatives, however, the matrix

elements 7:[0(m,n) are nonzero both for the 2d nearest as
well as for the 2d(d—1) diagonally adjacent (next-nearest)

neighbors. The detailed values of ﬂo(m,n) obviously de-
pend on the chosen discretization method.

We now turn to the nontrivial case of nonzero vector po-
tential A # 0. In this case, we must construct suitable discrete
approximations A; of the continuous gauge covariant deriva-
tives D,

DF(x) — AF(m), (11)

which will lead to the discrete eigenvalue problem,

> H(m,n)F(n) = EF(m), (12)

where ﬂ(m,n) are the Hamiltonian matrix elements in the
magnetic field. Importantly, a straightforward discretization
of Eq. (3) that follows the principle of Eq. (9),

AF(m)Z = [F(m + &) ~F(m)] + 154 m)F(m), (13)

results in a Schrodinger equation that cannot be chosen to be
gauge invariant on all grid points, particularly not simulta-
neously on positions m and m+¢g;. Consequently, such a
discretization would lead to a spectrum that depends mark-
edly on the chosen gauge for the vector potential A.%” We
will now show how to derive a suitable discrete approxima-
tion A; that leads to a manifestly covariant eigenvalue prob-
lem.

B. Theorem and corollaries

In the field-free case, we consider the discrete approxima-
tions &; and &; of the first- and second-order derivatives J;
and d;d;, respectively, which can be written in the following
general form:

SF(m) = éz Ci(s)F(m + 556,

i

1
5;F(m) = _22 Ci(s)F(m + 5;8,),
e

i

1
@]F(m) = _22 C”(S,,SJ)F(m + Siei + sjsj N (14)

SiSj

where i # j and s;,5; € {0, = 1}, so that the sums run over the
grid point m and its neighbors. The coefficients C have to be
chosen in such a way that they guarantee the limits
(i,j=1,...,d),

lim §F(m) = ¢;F(x), (15)

e—0
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e—0
Concretely, we have used the following values for the dis-
cretization coefficients in the applications that we will
present in Sec. IV:

c()=1, C(0)=-1, C(-1)=0,

1
C”-(O):—Z, Cii(i1)= 1, Cij(si’sj)=zsl'sj' (17)

Additionally, we may split the matrix elements 7:[0(m,n) of
the discretized field-free Hamiltonian in Eq. (10) into their
contributions corresponding to the zeroth, first, and second

derivates H? in Eq. (2),

Ho(m,n) = X, Ho(m,n,y), (18)
Y

with ye{0,i,ij}.

Definition. We define the discrete first-order approxima-
tion A; of the gauge covariant derivative D; and the second-
order approximations A; and A;; of D? and D;D;, respec-
tively, by multiplying each term in Eq. (14) by the discrete
connection U(m,n, y),

1
AF(m) =~ C(s)U(m,m + s;&,,i)F(m + 5;€;),
E 5

i

1
Ail’F(m) = _22 Cii(s,») U(m,m + S;E;, l)F(m + Sigl')’
&7 .

i

1
AI]F(m) = ;E Cl’j(si,Sj)[U(m,m +5;€; + Sjgj, lJ)

50,8
XF(m+Si8i+Sj8j)], (19)

where the last line holds for i # j. The discrete connection U
is defined by

U(m,n, ) = exp[if f A(x’)dx’], (20)
h S(m,n,y)

where the trajectory S(m,n, y) starts at position m and ends
at one of the nearest- or next-nearest-neighbor points n. The
specifier vy labels the concrete straight-line segments along
the Cartesian axes i,j of a particular trajectory as follows:

y=i, path: m—m=*e¢g=n,

y=ij, path: m—m=*g=l—-1*g=n (i#)),

y'=ji, pathh m—m=*eg=1'>1*g=n (i+#)).
(21)

Here, each segment &; connects only nearest neighbors as
indicated in Fig. 1. The choice of this integration path guar-
antees that the canonical momenta obey the well-known
commutator relation for finite magnetic fields. As we will
show below, this requires that the trajectories associated with
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=m+eg n=m-+g+g,
®-------- h AR
» S(m,n,ji)
A
: S(m,n,ij)
m " I=m+e,

FIG. 1. Alternative integration paths in the discretization of
mixed second-order derivatives.

y=ij and y'=ji, respectively, enclose an area £ that is com-
patible with the discretization stencil.

Theorem. The expressions [Eq. (19)] guarantee the correct
continuum limits,

lim A;JF(m) = D,F(x), (22)
e—0
lim A;F(m) = D,DF(x). (23)
e—0

Note that one has D;D;# D;D; for i # j.
Corollary 1. The matrix elements of the discretized

Hamiltonian H for nonzero vector potential A #0 can be
written in the form

7:[(m,n, )=7:[0(m,n, YU(m,n, y), (24)

Um,m,y)=U(m,m)=1, (25)
so that the discretized Schrodinger equation [Eq. (12)] reads

> Ho(m,n,y)U(m,n,7)F(n) = EF(m). (26)

n,y

Corollary 2. The discrete connection [Eq. (20)] obeys the
following condition:

U*(n,m,y") = U(m,n, y), (27)

which guarantees the Hermiticity of the Hamiltonian H.
Corollary 3. The discrete connection [Eq. (20)] obeys the
following discrete gauge transformation:

U(m,n,y) — U'(m,n,y)
e e
= exp[— i%A(m)} U(m,n, )exp[z;A(n)} ,
(28)
which guarantees the gauge invariance of the Hamiltonian .

Corollary 4. The covariant derivatives fulfill the well-
known commutator relations in the continuum limit,

e
lim[A,A,]=[D,.D,]= i%BZ, (29)
e—0

and cyclic permutations.

C. Proofs

To prove the theorem, we first evaluate the connections U
explicitly. For each path segment ; connecting the neighbors
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m, n via a path specified by v, we determine the curve inte-
gral in Eq. (20) by the trapezoidal rule,

1
f A(x")dx" = —[A;(m) + A,(m + g)]e
S(m,m+g;,i) 2

=A,(m+g/2)e. (30)

In the case of nearest neighbors m and m+s;g; (s;= = 1), this
results in the connection

e —
Um,m + s,€;,i) =exp[siigA[(m+s,-8,-/2)s] (31)

For the paths connecting next-nearest neighbors, specified by
y=ij, we add up the individual straight-line components of
the curve integral. With the definition [Eq. (20)], this leads to

U(m,m+si8i+sj'8j lJ)
oe_ .e—
=€exXp Sil%Ai(m+s58[/2)8+sjl£Aj(m+si£,-+sj8j/2)8 5

(32)

with s;, s; € {=1}. To show that the discretized Schrédinger
equation tends to the continuum case in the limit of € —0,
we expand the connections U into powers of &,

e
Um,m +s,e;,i)=1+ s,-i%A,»(m)e +0(&?). (33)
For the wave functions F, we have

F(m + s5,€;) = F(m) + 5,0F (m)e + O(£?). (34)

By inserting these relations into the first derivatives [Eq.
(19)], we obtain

AFm) =3 Ci(s) [Hm) + 5,0F(m)s
e’

+ sii%Ai(m)F(m)s] +0(e). (35)

Since, the first line in Eq. (35) must reduce to the partial
derivative 9;F(m), the coefficients C; have to fulfill the rela-
tions

2 Ci(s) =0, 2 Cis)s;=1. (36)

i i

This can be used to simplify the second line in Eq. (35) and
leads to the required limit,

AF(m) = 3F(m) + i%Ai(m)F(m) +0().  (37)

By following arguments along these lines for the second de-
rivatives as well, we finally obtain (see Appendix B for a
detailed derivation)

A F(m) = [a,- + i%A[(m)] {aj +ivA j(m)}F(m) +Oe),

(38)

which has the correct continuum limit.
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m @ g ®

<

Si' =& !
S(m,n,ii)*Sj S(n,m,ji) t'gj

n n

FIG. 2. Tllustration of the integration paths associated with (a)
the connection U(m,n,ij) and (b) its Hermitian conjugate
U(n,m,ji).

Next, we will prove Corollary 1. This result follows from
the fact that each zero-field Hamiltonian matrix element

I:I()(m,n, v) gets augmented by a corresponding phase factor
U(m,n,vy), ye{0,i,ij}, according to Eq. (19). In order to

prove Corollary 2, we need to show that the Hamiltonian H
is Hermitian. This implies the relation

U*(n,m, y"')lflg(n,m, Y= I}"'(n,m, Y= I:I(m,n, )
=Hy(m.n,7)Um.n,y). (39)

The field-free Hamiltonian is definitely Hermitian and obeys
Hi(n,m,y")=Hy(m,n,y), since H/=(H")’. Thus, we are
led to the condition

U*(n,m,y") = U(m,n, 7). (40)

We now show that this equation is fulfilled indeed. For a
nearest-neighbor connection, we immediately find this rela-
tion to hold,

e
U(m,m+£,-,i)=exp{—i—f A(x’)dx'}
h S(m + £;,m,i)

=U"(m + g;,m,i). (41)

For the next-nearest-neighbor connection between m and n
=m+¢g;+¢; specified by y=ij, we obtain

U(m,n, ij)

= exp[i%gi(m +&/2)e+ i%gj(m + &+ 8/2)8]

oe y ~e y *
=exp| — Z%Aj(ll -&/2)e— I%Ai(ll —-&;—g/2)¢

= U*(n,m, i), (42)

which is precisely the condition [Eq. (40)]. Note that the
appropriate paths S(m,n,ij) and S(n,m, ji) contain the same
segments but are traversed in the opposite direction (see Fig.
2).

We now turn to Corollary 3. Let us write the discretized
Schrédinger equation [Eq. (26)] in a different gauge,

> Hy(m,n,y)U'(m,n,)F’'(n) =EF’(m).  (43)

n,y

The relation between the envelope function F(n) and its cor-
responding form in the primed gauge is the same as in the
continuous case and reads

PHYSICAL REVIEW B 78, 075317 (2008)

F(n) — F'(n) = exp[— i%A(n)]F(n). (44)

Inserting Eq. (44) into Eq. (43) leads to the requirement that
U(m,n,y) has to fulfill a discretized version of the con-
tinuum gauge transformation,

U(m,n,y) — U'(m,n,y)

= exp{— i%A(m)] U(m,n, y)exp{i%A(n)] .
(45)

We now show that this condition is fulfilled indeed. The
discrete gauge transformation for Eq. (30) reads

Al(m+g/2) =A,(m + g/2) + l[A(m +g)—-A(m)].

(46)

Inserting this expression into the nearest-neighbor connec-
tion [Eq. (31)], we immediately obtain Eq. (45). For the con-
nections to next-nearest neighbors, we get

U'(m,m+ g; + &,ij)

=exp i%[A_,-(m +&/2)e+A(m+g;) - A(m)]}
Xexp i%[gj(m +g+€/2)e+ A(m+¢g;+¢)

—A(m+s,-)]}, (47)

=exp[- i%A(m)} Um,m + £+ £,1))

Xexp{i%/\(m+£i+ ej)}, (48)

which confirms Eq. (45) as well. In addition, the discrete
gauge transformation [Eq. (46)] obviously has the correct
continuum limit [Eq. (5)]. Together, these results confirm
that the discretized Schrédinger equation [Eq. (26)] is invari-
ant under local phase transformations. Finally, we prove
Corollary 4. Using Eq. (38), we can see that the discretized
covariant derivatives obey the commutator relation [Eg.
(29)] in the continuum limit,

lim[A,A] = lim i%(&iAj—dei)+(’)(8) :i%sgn(z’, kB,
e—0 e—0

=[D:.D}]. (49)

An issue we have not discussed so far concerns the unique-
ness of the integration trajectory S(m,n, y). For connections
between nearest neighbors, the integration path is unique.
For diagonally adjacent neighbors, however, there are two
possible paths to choose from (see Fig. 1). Gauge invariance
only demands that the integration path continuously connects
position m with position n. The Hermiticity of H is guaran-
teed once the same path is traversed in opposite direction for
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H (see Fig. 2). In addition, however, the covariant deriva-
tives have to fulfill the commutator relations [Eq. (29)]. For
the second-order approximations A;; in Eq. (19), the only
element that depends on the order of i and j is the path
characterized by y=ij, since C;;=Cj;. Thus, we can see that it
is the precise choice of y in Eq. (21) that guarantees the
correct order in Eq. (38) which in turn guarantees the validity
of Corollary 4. This additional constraint causes the integra-
tion trajectory to be unique.

D. Summary of method

We have developed a general method to include a mag-
netic field into the multiband envelope function Schrodinger
equation in a gauge-invariant manner. We have shown that
the resulting Hamiltonian is Hermitian, guarantees the cor-
rect continuum limit, and preserves the correct operator or-
dering.

To apply this method, one first discretizes Hamiltonian (2)
in the field-free Schrodinger equation [Eq. (1)] using the dis-
cretization scheme of Eq. (14) with the coefficients [Eq.
(17)]. This yields the discretized Schrédinger equation [Eq.
(10)] with the Hamiltonian matrix consisting of the zeroth-,
first-, and second-order derivatives [Eq. (18)]. Next, each

matrix element of the Hamiltonian ﬁo(m,n, v) is to be mul-
tiplied by the phase factor U(m,n,y) in order to take into
account the vector potential A. For nearest neighbors, this
phase factor is given by Eq. (31). For diagonally adjacent
neighbors, Eq. (32) is needed. In the latter case, one must be
careful to discriminate terms of the form y=ij from those
that contain y=ji. Finally, one needs to add a zeroth-order
derivative term, the Zeeman term, namely (see Appendix A),
to the Hamiltonian in order to include the coupling of the
carrier’s spin to the magnetic field.

IV. RESULTS: EFFECTIVE g FACTORS OF QUANTUM
WIRE DOTS

A. Electron g tensor

As a first illustration of the present method, we predict the
effective g tensor of electrons in nanowire-based quantum
dots. Experimentally, effective electron g factors of InP/InAs
nanowire dots have been determined recently.!> The quantum
dots possess the wurtzite crystal structure, have a hexagonal
shape, and are characterized by a diameter D, the InAs quan-
tum dot length L, and a left and right InP barrier thickness w
(see Fig. 3). The diameter D equals 50 nm in these experi-
ments. The experimental values of the effective g factors
range from |g*|=13 which is close to the InAs bulk value for
dots with L=270 nm to |g*|=2.3 for the thinnest dots with
L=8 nm.

Electron g factors for these quantum dots have been cal-
culated previously.*® However, we found the hole g factors in
Fig. 2 of the related Ref. 28 to disagree with the present
method. We can quantitatively reproduce the results of this
paper by using an incorrectly symmetrized ordering that can
be obtained by substituting Eq. (51) into Eq. (A3). In order
to show consistently calculated results for both electron and
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FIG. 3. Comparison of calculated strained (solid lines), calcu-
lated unstrained (dashed lines), and experimental (circles) effective
electron g factors for wire dots of length L. The g and g, compo-
nents correspond to the magnetic-field lying parallel and perpen-
dicular to the wire axis, respectively. Experimentally, only the g
components have been determined (Ref. 12).

holes in terms of the present scheme, we present here also
briefly the results for electron g factors.

In our calculations, we have simplified the geometry by
assuming a quadratic or circular cross section of the dots (see
inset of Fig. 3), since the precise shape of the dots does not
influence our results in the range of the studied dot dimen-
sions and magnetic fields. The k-p parameters for InAs and
InP have been taken for the zinc-blende structure from Ref.
49 except for the k parameter that has been tabulated in Ref.
50. The spin splitting AE; l:ET—El of the electron ground
state in the dot has been calculated within a relativistic eight-
band k- p model that is detailed in Appendix A. The effective
g tensor elements G¥ (k,I=1,2,3) can then be extracted
from the relation

AE; = g [ 2 B,G'B, (50)
Kl

where B; are the Cartesian components of the magnetic field.
The spin splitting must be evaluated for a sufficiently small
value of |B| (which we took to be equal to 0.1 T) to exclude
higher order contributions. Due to symmetry, only fields
along the (100) and (001) directions need to be considered in
the present case for solving the linear system of equations
that result from Eq. (50). For our geometry and within the
eight-band k-p model, we have G**'=G"” and GY=0 for all
off-diagonal tensor components. We have determined the
signs of the g tensor elements from the spin directions of the
Zeeman split states and found that all calculated g factors
had negative sign (E' <E!) as expected from the bulk values.

Figure 3 compares the calculated perpendicular electron g
factor g, =(G*)!""? with the experimental results of Ref. 12
for dot lengths L between 8 and 20 nm and a barrier thick-
ness of w=6 nm. Furthermore, our calculations predict the
electron g factor for the magnetic field parallel to the wire
axis, g,=(G%)"2. The theory takes into account the strain as
we will discuss in more detail below; Fig. 3 shows both type
of results where strain effects in the Hamiltonian have been
included or (artificially) set to zero to elucidate the sole
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FIG. 4. Comparison of calculated strained (solid lines) and un-
strained (dashed lines) effective hole g factors for wire dots of
length L and magnetic-fields pointing perpendicular (g ) and par-
allel (g) to the wire axis. The dotted line illustrates the importance
of the correct operator ordering in Eq. (A3) by showing the un-
strained g, for a Hermitian but naively and therefore incorrectly
symmetrized Hamiltonian.

strain effect on the g factor. As one can deduce from the
figure, our calculations excellently reproduce the experimen-
tally observed trend that shows the g factors to increase with
increasing dot length. We have checked that the use of the
correct operator ordering in Eq. (A3) plays a negligible role
for the electron g factors in the nanowire dots. Thus, our
results are consistent with Ref. 48.

B. Hole g tensor

We now turn to the hole g factors in these nanowire-based
quantum dots. For quantum wells in a magnetic field, each
valence subband splits into a complicated pattern of Landau
levels that are conventionally labeled by the Bloch function
orbital momentum J, and an integer n=-2,—1,0,---.! Since
all those states with the same modulus |J.| become degener-
ate for zero magnetic field, these states tend to cross at some
magnetic field which makes it nontrivial to uniquely define
hole g factors. The situation in quantum dots is far more
transparent. Here, the lateral confinement splits the states
corresponding to different lateral momenta of the envelope
function already at B=0. This allows one to uniquely define
the hole g tensor by the energy separation between the ener-
getically lowest dot state and the lowest excited state with
reversed sign of J,. For the dots considered in the present
paper, this pair of states is dominantly heavy-hole-like and
originates from the pair of quantum well Landau levels with
J.,==3/2,n=-2 and J,=3/2, n=1.! These states remain the
energetically lowest dot states up to magnetic fields of 4 T
and ensure an unambiguous definition of the hole g factor.

In Fig. 4, we show our calculated results for different dot
lengths, both with and without the inclusion of strain, and for
parallel and perpendicular magnetic fields. Again, all g fac-
tors are negative, but for simplicity we only discuss their
absolute values. The size dependence of hole g factors in
quantum dots is more complicated than for electrons. The
dots considered here have a large width to height ratio so that
carriers are only weakly confined laterally, i.e., perpendicular
to the wire axis. Therefore, the calculated hole g factors in
Fig. 4 resemble the values found for wide quantum wells,
which can be obtained from the bulk Hamiltonian.’! In the
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latter case, already a six-band k-p model gives the well-
known results>?# gM=6k, g"=2k, g'=0, gM=4x,
where « is a Luttinger parameter. For InAs, one has «
=7.68 which is much larger than this constant in InP, where
one has x¥=0.97.59 Due to the confinement, the wire dot
ground state is mainly heavy-hole-like and its g factors g, g |
show an anisotropy that is somewhat smaller but still of the
order of the bulk anisotropy. For the shortest dots, the wave
functions penetrate into the InP barriers. This effect leads to
a reduction in the g factors because « is smaller for InP.
Furthermore, the orbital motion is hampered in the limit
L—0 so that the hole g factors tend toward the pure spin
value in this limit. The larger the dot length L and the more
extended the hole wave functions are, on the other hand, the
closer the g factors lie to the bulk values of InAs. However,
there is a competing effect that turns out to dominate in the
limit of large values of L. The reduction in axial confinement
for large L implies an increase in the light-hole (lh) contri-
bution of the ground state. Indeed, the light hole contribution
amounts to only 1.5% for L=8 nm but increases to 12.0%
for L=20 nm. Since g >g"" in bulk, g, increases also in
dots in the limit of large L. Analogously, g, decreases in this
limit since g‘l‘h< gf“h in bulk. Qualitatively similar trends have
been predicted previously for self-assembled Si/Ge quantum
dots?! and for InGaAs dots.'!?> Experimentally, heavy-hole
(hh) g factors have been determined for GaAs quantum
wells>>3 and for self-assembled InGaAs dots.®° In both of
these situations, the observed values are much smaller than
for InAs nanowire dots, since the bulk g factors of GaAs are
much smaller («k=1.2), and carriers are significantly more
strongly confined in self-assembled dots.

Finally, we have investigated the influence of the momen-
tum operator ordering in Hamiltonian (A3) on hole g factors.
As discussed in detail in Appendix A, the known continuum
limit of the k-p Hamiltonian3! imposes an unambiguous
constraint on the ordering of momentum operators in the
discrete Hamiltonian.>*#! To investigate the effect of this op-
erator ordering, we have replaced the correct Hamiltonian in
Eq. (A3) by an incorrect one, namely, a naively symmetrized
version. To this end we set [see Eq. (A3)]

N.=N_=(N.+N.)2. (51)

The resulting hole g, factors for quantum wire dots are in-
cluded in Fig. 4 (dotted line) and are seen to deviate strongly
from the correctly calculated values. We have repeated this
calculation for the experimentally determined hole g factor
in Ref. 8 and found excellent agreement with the present
theory, when we invoke the correct operator ordering.

C. Strain effects on electron and hole g tensor

The InP/InAs nanowires investigated by Bjork et al.'? are
freestanding wires with a relaxed InAs lattice structure and
pseudomorphically strained InP layers. We have calculated
the spatial strain profile of the heterostructure wires by mini-
mizing the total elastic energy in a linear continuum elastic-
ity model.”> Figure 5(a) shows the resulting strain profile
along the wire axis near the dot with a length of L=20 nm
and barrier thicknesses of w=6 nm. We find the InAs dot to
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FIG. 5. (a) Cross section of calculated strain components along
the wire axis z for a dot with a length of L=20 nm and a barrier
thickness of w=6 nm. (b) Calculated energies of conduction band
(cb), heavy hole (hh), and light hole (Ih) valence-band edges.

be compressively strained (e,,=&,,<<0), whereas the InP
barriers show a tensile strain. Outside of the InP barrier ma-
terial, the lattice relaxes to unstrained InAs after approxi-
mately 25 nm. Our calculations are qualitatively consistent
with previous experimental and theoretical strain results ob-
tained for similar wires with much smaller diameters and a
single InAs/InP interface.>* The incorporation of this strain
into the Hamiltonian via linear deformation potentials
(see Appendix A) leads to changes in the electronic structure
and the g factors. For the electron g factor, these trends can
already be understood in a bulk model originally derived
for electrons in homogeneously strained layers.>> The
band gap within the dot is slightly increased due to
the hydrostatic pressure component of the strain,
OE,=(a,~a,)(e+&y,+€,.)>0, and the heavy-hole band
edge gets pushed above the light-hole band edge due to a
tetragonal distortion that is proportional to &..—&,, [see Fig.
5(b)]. This distortion additionally induces a mixing of the
light hole and the split-off (so) hole band. Together, these
changes in the electronic structure affect the coupling be-
tween conduction and valence bands and enhance the aniso-
tropy of the electron g factor.>> Namely, the increased band
gap reduces the conduction-band—valence-band coupling,
which is the source for the deviation of the electron g factors
from 2. For the perpendicular g factor, the lh/so mixing adds
up to this effect. Therefore g | is decreased, still reproducing
the experimental results. By contrast, for g, the 1h/so mixing
has an increasing effect. Here the hh/lh splitting additionally
raises the g factor. Together, these effects exceed the general
reduction due to the increased band gap and lead to larger
values of g.

Hole g factors are far more sensitive to strain effects be-
cause the hole states are p states and couple directly to the
spin. The main effect of the compressive strain within the dot
is to shift the heavy-hole band edge above the light-hole
band edge. This reduces the light-hole contribution to the
ground state from 1.5% in the unstrained case to 1.1% for
L=8 nm and from 12% to 3.8% for L=20 nm. Again fol-
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FIG. 6. (a) Calculated electron (dashed lines) and hole (solid
lines) Zeeman splittings and (b) effective g factors for electrons and
holes as a function of the magnetic-field lying parallel to the wire
axis for a dot of length L=10 nm.

lowing the trends in the bulk values, this implies a slight
increase in g, and a decrease in g that is much less pro-
nounced than in the unstrained case. This explains the in-
creasing difference between the strained and unstrained g
factors in the limit of large dot lengths L.

D. Spin splitting for high magnetic fields

Since our approach takes into account magnetic fields
nonperturbatively, we may study the electronic structure at
high magnetic fields B. In the framework of k-p theory,
however, the magnetic length must remain large compared to
the lattice constant. The strong confinement and strain in-
duced light- and heavy-hole splittings guarantee that all
light-hole states remain energetically well separated from the
heavy-hole ground state up to the highest B fields consid-
ered, so that the hole g factor remains unambiguously de-
fined. The spin splitting of the lowest electron state increases
linearly with B up to 10 T for a dot of length L=10 nm and
the magnetic-field pointing along the wire axis. The spin
splitting of the hole ground-state responds more sensitively
to B and deviates from linearity already at 4 T. In Fig. 6, we
depict the electron and hole g factor up to 40 T. We see that
the effective g factors AE; /(ugB) decrease with increasing
field strength, which resembles the experimentally observed
trends in quantum wells.>* We associate this effect with a
magnetic-field induced band mixing. For the hole ground
state, we find the average heavy-hole component of the
spin-up and spin-down states to decrease with increasing B.
This diminishes the g, factor of holes as has been pointed out
previously.”> We find an analogous but less pronounced be-
havior for electrons, where the conduction-band component
decreases with increasing B.

To visualize the influence of high magnetic fields, in Fig.
7, we show the lateral deformation of the electron ground-
state wave function within an L=20 nm dot as a function of
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FIG. 7. Cross section of the density of the electron ground state
at the dot center in units of 10'8 cm™ for different magnetic fields
in tesla. The density of the ground state shows a noticeable defor-
mation if the ratio a=fhw./AE is close to one. (a) a=0, (b) a
=0.2, and (¢) @=0.8.

a magnetic field B, perpendicular to the wire axis. This
wave-function deformation is controlled by the ratio between
the magnetic cyclotron energy fiw, and the lowest zero-field
electron excitation energy AE in the dot. The latter quantity
is a measure of the confinement. The larger the value of AE,
the smaller the deformation induced by the magnetic field
is,”® and this can be clearly deduced from the figure.

V. SUMMARY

In summary, we have developed a general method to
solve the multiband Schrédinger equation in an external po-
tential plus a magnetic field in an efficient and manifestly
gauge-invariant manner. It is based on the concept of gauge
covariant derivatives.*>*6 The phase factors comprise a dis-
cretized form of the curve integral over the vector potential.
The integration paths are compatible with the discretization
grid and are given by a chain of straight-line path segments
connecting nearest neighbors. Their choice is uniquely de-
fined by the constraint that the momentum operators must
obey well-known commutator relations. The Hamiltonian
matrix elements are shown to be gauge invariant for any
finite grid spacing and converge to the same correct con-
tinuum result in the limit of infinitesimal grid spacing. The
coupling of the carrier’s spin to the magnetic field is properly
taken into account by a Zeeman term within the EFA
scheme.

kiL'k,+ >, k;Mk;

i=23
3

ﬁ2
HIS (k) =E, + 2—2 k? +

my j=1

kyN_ky + ksN'k,

k\N_ky + koN'k,
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To illustrate the method, we have computed the effective
g tensor for electrons and holes in InP/InAs nanowire-based
quantum dots. For electrons, we obtained excellent agree-
ment with experimental data.'”> Our results show that the
changes in the electron g factors correlate well with the spa-
tial extent of the wave functions and therefore with the an-
gular motion, as has been argued before.”® The g factors for
holes are shown to depend much more sensitively on the
sample geometry and material composition which allows sig-
nificant tailoring of their values, e.g., by changing the dot
size. We predict a strong anisotropy of the g tensor compo-
nents for magnetic fields that lie parallel or perpendicular to
the wire axis. We find this anisotropy to get enhanced with
strain. Additionally, we have calculated the influence of high
magnetic fields on the g factors and find markedly nonlinear
Zeeman splittings.

ACKNOWLEDGMENTS

The authors acknowledge support from the Deutsche
Forschungsgemeinschaft (Grants No. SFB 631 and No. SPP
1285), the Austrian Science Fund FWF (SFB IRON), and the
Nanosystems Initiative Munich (NIM).

APPENDIX A

We have based our calculations in Sec. IV on the
following eight-band k-p envelope function Hamiltonian in
real space.®>3* In the basis of spin-resolved zone-center
conduction and valence-band Bloch functions |go?)
e{s,x,y,z} X{1,!}, the Hamiltonian for zero magnetic field

can be written in the following form:3%#!
ax4 4x4
H8><8(k)_ H (k)+H3 0 +H8><8
- 0 H4 k) + HE v
(A1)

Here, the Hamiltonian 7**4(k) contains the momentum op-
erator k=—iV and material parameters that are spatially de-
pendent in nanostructures,

3
E.+ > kA, iPk, iPk, iPk;

i=1

HYYK)=| —ik,P ,
— ik,P H
—iksP
(A2)
k\N.ky+ Nk, kyNlks + ksN_k,
kol'ky+ 2 kiMk; koN' ks + k3N _k, (A3)

i=1,3

kiL'ky+ >, k;Mk;

koN_ks + k3N'k, <
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Here, A, includes the free-electron mass and remote-band
contributions to the conduction-band mass.*! P denotes the
interband coupling matrix element. Instead of the original
linearly independent Dresselhaus parameters56 F, G, H;, and
H,, we have specified this Hamiltonian in terms of the more
commonly used derived Dresselhaus parameters L, M, N,,
and N_, which are related to each other by

L=F+2G, M=H1+H2, (A4)

N,=F-G, N_=H,-H,. (AS)

The latter two parameters have been introduced in Ref. 41.
Another commonly used and tabulated set of derived Lut-
tinger parameters3'>%7 is vy, v,, 3, and «. In terms of these
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h2

M=2—(— Yi+2y-1), (A7)
my
hZ

Ny=-—(-3y-3k-1), (A8)
2m0
h2

N_=—(-3y+3k+1). (A9)

2m0

Since these parameters have been originally defined for a
six-band k-p model,3'*%7 two of them require a modifica-
tion for the present eight-band model in order to avoid
double counting of terms. The correct eight-band parameters
are related to the original ones by the relation

parameters, we can write P2 P2
L'=L+—, N,=N,+—. (A10)
h? E E,
=—(Cy-4n-1), A6
2m0( ni=4n-1) (46) The strain field Hamiltonian Hﬁ“ is given by
|
a, Tr(e) 0 0 0
i 0 le + m(eyn+ &33) ney, nejs (AL
€ 0 nen 1822 + m(sn + 833) néejy
0 ne 3 néjs 1833 + m(sll + 822)

ere, ¢, are the components of the symmetric strain tensor, a. denotes the absolute deformation potential of the conduction
Here, &, are th ponents of the symmetric strain t . denotes the absolute deformation potential of the conduct
and, and the parameters /, m, and n are determine e absolute deformation potential a, and the shear deformation
band, and the parameters I d determined by the absolute deformation potential a, and the shear deformat
potentials b, d of the valence band,3>3

I=a,+2b, (A12)
m=a,—b, (A13)
n=\3d. (A14)

Finally, the spin-orbit Hamiltonian anx 8 contains only a few nonvanishing elements between the p-type basis functions,

== i0, (RS, = 0

so /xT.yT =-1 3 > so Ixlzl = ?7 (AIS)

and cyclic permutations. Hamiltonian (A3) contains a particular ordering of the momentum operator components that has been
proposed by Refs. 37-41. We now show that this and only this specific ordering guarantees the correct k-p Hamiltonian for
bulk in nonzero magnetic fields. Magnetic fields are introduced into Hamiltonian (A3) simply by the replacement k;— K;
=k;+(e/h)A;(x). Note that the Dresselhaus®® parameters are constants in bulk materials. Using the commutator relation for the
momentum operator, we have

[K.K]=KK, - KK =- i% sen(i,j,k)B,. (A16)

Using these relations, the k-p Hamiltonian in a magnetic field now reads
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L'K3+M > K’

PHYSICAL REVIEW B 78, 075317 (2008)

Py N'{K\, K} N'{K,,K3}
72 2 ’ 3
HCK) =B+ o S K +|  NiKLKE L K+ M 21 Ko NiKoK) |- mGer D T8, (A7)
Mg =1 = i=1
1 2 2
ViKY NiGK) DKM K

where N'=N_+N_ and we have used the anticommutator

1
KK} = E(Kin'*'KjKi)- (A18)

The 3 X 3 angular-momentum matrices I' have been defined
by Ref. 31 and up is the Bohr magneton. This result corre-
sponds precisely to the k-p Hamiltonian in a magnetic field
as proposed in Ref. 31.

Since we include the spin degree of freedom, finally we
need to augment Hamiltonian (A1) by the Zeeman term,

3
SOMB X i
Hi.;s = E SlBi,

A19
) = (A19)

where go=2 and the matrix elements of the spin matrices §i
are given in terms of the Pauli matrices &”,

S, ={q'0'|6|qo) = 5/q0'0 (A20)

q'0’ qo o

This Zeeman term, together with the last term in Eq. (A17),
leads to the bulk hole g tensor components noted in Sec.
IV B. Finally, the Hamiltonian in Eq. (A1) can be written in

the form of Eq. (2). The matrices H” result from those ele-
ments of Eq. (A1) that are second order in the operators K;,

while H' results from the first-order terms. The remaining
terms that are zero order in K; contribute to the matrix HO.

APPENDIX B

In order to prove Eq. (38) for i=j, we expand the connec-
tion U in Eq. (31) up to second order of &,

Um,m+s,€,i)=1+s; lhA (m)e + s Ez%(aA )(m)e?

,le
_ ——Az(m)s +0(&%). (B1)
For the wave functions F, we have

F(m + s5;&;) =F(m) + 5,0 F(m)e + s; ;(?lZF(m)s +0(Y).
(B2)

By inserting Egs. (B1) and (B2) into Eq. (19), we get

L

A;F(m) = %E C,-,-(sl-){F(m) +5,0F(m)e + s%&izF(m)sz
ey
+ siigAi(m)s[F(m) + 5,0F(m)e]

L P € p2m) [Fm)e?  +0
+S,2 i (3:A)(m) - =5A;(m) |F(m)s” [+ O(e).

(B3)

Here the sum runs over s; € {0, = 1}. The first line in Eq.
(B3) must tend to (?izF(m) as in the field-free case, which
requires the coefficients to obey

> Cils) = 2 Cii(s)s; =0, (B4)

> Ciils)s?=2. (BS)

Using these relations, the entire expression [Eq. (B3)] tends
toward the correct continuum limit [Eq. (38)]. For the mixed
second-order derivatives, the diagonally adjacent neighbors
are needed. For this case, we expand Eq. (32) analogous to
Eq. (B1),

U(m,m + 5;&; + 5,€,ij)

—1+ [siiEA-(m) +s A](m)]

! ]ﬁ
2

¥ sf%{i%(:?iAi)(m) - ;A?(nﬂ}sz

2

A [(m)A (m)]

2

+5;8; { —(d:A;)(m) —

+s1[l (9A))(m) - 2(m)]s +0(&%). (B6)

12
Furthermore, we need
F(m + Sisl‘ + Sj(:‘j)

=F(m) + [5;0,F(m) + 5;0,F(m) e

+ [s —<92F(m) +5;5;0;0;F(m) + s BJZF(m)]

+0(&?). (B7)
Inserting these relations into Eq. (19) gives
s;,5;€{0, £1}),
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A;F(m) = éz Cij(si,sj){F(m) +[s;0F(m) +5;0,F(m)]e + {s ;BZF(m) +5;5;0,0;F(m) + s r?sz(m)}

S8

+ [s,»i%A,-(m) +s;i P j(m)] [F(m) + 5,0F(m)e +5,0,F(m)e]e +5; %[l—(()”A )(m) - —Az(m)]F(m)s

o2
+5:8; { (&A J)(m) — A (m)A (m) ]F(m)s + 5% —[z— j)(m) z(m)]F(m)a } +O(e). (BY)
Again, the field-free case constricts the coefficients to
E Cij(sissj):E Cij(si’sj)sizo’ (B9)
58 S8

2 Cij(si’sj)5j=0 (BIO)

8pS;
2 Cij(sis)s} = E Cij(sis))s7 =0, (B11)

SixSj

E Cij(sissj)sisj =2 (B12)

S8

Inserting these relations into Eq. (B8) results in Eq. (38), which has the correct limit.
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